A1099 Build A Binary Search Tree(30 point(s))

得到树结构,匹配中序数据,得层序

1. 原文

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

figBST.jpg

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

output Specification:

For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

Sample Input:

1
2
3
4
5
6
7
8
9
10
11
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42

Sample output:

1
58 25 82 11 38 67 45 73 42

2. 解析

已知树结构,根据中序遍历次序,插入数据

1
2
3
inorder(v[root].lchild);
v[root].data=in[t++];
inorder(v[root].rchild);

再BFS 得层序

3. AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node{
int data;
int lchild,rchild;
}v[110];
int in[110]={};
int t=0;
void inorder(int root){
if (root==-1)
{
return;
}
inorder(v[root].lchild);
v[root].data=in[t++];
inorder(v[root].rchild);
}
int key;
void levelorder(int root){
queue<int> q;
q.push(root);
while(!q.empty()){
int temp=q.front();
if (key==0)
{
printf("%d",v[temp].data);
key++;
}else{
printf(" %d",v[temp].data);
}
q.pop();
if (v[temp].lchild!=-1)
{
q.push(v[temp].lchild);
}
if (v[temp].rchild!=-1)
{
q.push(v[temp].rchild);
}
}

}
int main()
{
int n;
scanf("%d",&n);
for (int i = 0; i < n; ++i)
{
scanf("%d%d",&v[i].lchild,&v[i].rchild);
}
for (int i = 0; i < n; ++i)
{
scanf("%d",&in[i]);
}
sort(in,in+n);
inorder(0);
levelorder(0);
return 0;
}
本文结束  感谢您的阅读
  • 本文作者: Wang Ting
  • 本文链接: /zh-CN/2019/09/03/A1099/
  • 发布时间: 2019-09-03 12:31
  • 更新时间: 2021-10-29 14:07
  • 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

Related Issues not found

Please contact @WTlumos to initialize the comment