多项式相加
1. 原文
This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
K $N_1$ $a_{N1}$ $N_2$ $a_{N2}$ … $N_K$ $a_{NK}$
where K is the number of nonzero terms in the polynomial, $N_i$ and $a_{Ni}$ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤$N_K$<⋯<$N_2$<$N_1$≤1000.
output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
1 | 2 1 2.4 0 3.2 |
Sample output:
1 | 3 2 1.5 1 2.9 0 3.2 |
2. 解析
给定两行,每行表示一个多项式:第一个数表示该多项式中系数非零项的项数,后面每两个数表示一个项,分别表示项的幂次和系数。求两个多项式的和,并按指数从大到小输出。
Solution:
定义一个double数组num
指数相同时,系数相加 –> 使num[指数]+=系数
遍历数组,不为0的元素值即为多项式个数
从后往前遍历数组,输出不为0的元素
3. AC代码
1 |
|